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Kinases play important roles in diverse cellular processes, including
signaling, differentiation, proliferation, and metabolism. They are
frequently mutated in cancer and are the targets of a large
number of specific inhibitors. Surveys of cancer genome atlases
reveal that kinase domains, which consist of 300 amino acids, can
harbor numerous (150 to 200) single-point mutations across differ-
ent patients in the same disease. This preponderance of
mutations—some activating, some silent—in a known target pro-
tein make clinical decisions for enrolling patients in drug trials
challenging since the relevance of the target and its drug sensitiv-
ity often depend on the mutational status in a given patient. We
show through computational studies using molecular dynamics
(MD) as well as enhanced sampling simulations that the experi-
mentally determined activation status of a mutated kinase can be
predicted effectively by identifying a hydrogen bonding finger-
print in the activation loop and the αC-helix regions, despite the
fact that mutations in cancer patients occur throughout the kinase
domain. In our study, we find that the predictive power of MD is
superior to a purely data-driven machine learning model involving
biochemical features that we implemented, even though MD uti-
lized far fewer features (in fact, just one) in an unsupervised set-
ting. Moreover, the MD results provide key insights into
convergent mechanisms of activation, primarily involving differen-
tial stabilization of a hydrogen bond network that engages resi-
dues of the activation loop and αC-helix in the active-like
conformation (in >70% of the mutations studied, regardless of
the location of the mutation).

molecular dynamics | machine learning | kinase activation | driver
mutations | focus formation assay

Neuroblastoma (NB) is the third most common cancer in
children. Most NBs begin in sympathetic nerve ganglia in

the abdomen—about half in the adrenal gland—and children
with high-risk NB have a 5-y survival of only around 50%. These
high-risk tumors are genomically and genetically heterogeneous,
presenting with gene amplifications (mainly of the MYCN gene)
and in some cases mutations in other genes—notably ALK (an-
aplastic lymphoma kinase), which encodes a receptor tyrosine
kinase (RTK) (1, 2). Although germline ALK mutations in fa-
milial NB were reported first, somatic mutations were subse-
quently identified in patients, and the majority of all mutations
occur in the cytoplasmic tyrosine kinase domain (TKD) of ALK
(3). This discovery was important because aberrant kinase ac-
tivity of the ALK TKD can be inhibited with existing drugs (3–6).
Indeed, therapeutic targeting of ALK in other tumors such as
non-small cell lung cancer (NSCLC), in which it is activated in an
oncogenic fusion protein (7), has been successful. However, as
shown for EGFR in NSCLC (8–10) and for ALK in earlier

studies in NB, TKD mutations vary in the degree to which they
activate the kinase—leading to oncogenesis—and in their effects on
sensitivity to inhibition with small molecule inhibitors (5, 11, 12).
We previously identified ALK mutations or amplifications in

14% of 1,600 patients with NB (11). Three hot spots in the ALK
TKD (positions 1174, 1245, and 1275) account for 85% of kinase
mutations, although mutations at numerous other sites have also
been reported (10, 11, 13). These include clearly activating muta-
tions, silent mutations (i.e., those shown not to be activating), and
mutations that confer resistance to known ALK kinase inhibitors.
A key challenge is to develop approaches for rapidly identifying

which kinase domain mutations in such a list can be classified as
cancer drivers (i.e., have an impact on cancer progression or
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treatment) and which are “passenger” mutations with no clinical
consequence (14). Several approaches have been proposed for
predicting and/or explaining the effects of mutations on kinase
regulation. These include molecular dynamics (MD) simulations,
structural bioinformatics methods based on evolutionary analy-
ses, network analysis, and machine learning (ML) (15). The
earliest attempts to understand how well sequence changes are
tolerated were undertaken not in the context of cancer, but
rather as efforts to understand evolutionary distances between
sequences. These methods give probabilities of mutation based
on phylogenetic trees (16) or sequence alignments (17), but were
not designed to predict the effects of mutations on protein
function. One of the earliest methods for predicting whether a
mutation is deleterious is called Sorts Intolerant From Tolerant
(SIFT), which uses sequence conservation to determine “dele-
teriousness” (18, 19) and remains a benchmark in the field of
mutation classification. Several other algorithms have been de-
veloped that use sequence conservation or homology to predict
the effects of single-nucleotide polymorphisms (SNPs) (20–24).
In particular, PolyPhen-2 utilizes several sequence-based and
structure-based features for the classification of driver versus
passenger mutations arising from SNPs. Another approach (25)
uses the mutation rate of noncoding genomic regions as a
baseline and tries to identify genes in which there is a statistically
significant deviation from this baseline. Several groups have also
developed ML techniques to separate driver from passenger
mutations. Methods used include random forest (26, 27), en-
tropic methods (28), support vector machines (SVM) (15, 29,
30), graph/network analysis (31), and convolutional neural net-
works (32). A systematic assessment of the balanced accuracy of
these methods is difficult to obtain as the published reports are
applied across different datasets. However, a recent review of the
predictive power of a subset of the methods outlined here con-
cluded that MD-based and ML-based methods performed better
in terms of balanced accuracies (15). MD methods in particular
have the additional advantage over other predictive algorithms
as they also provide a mechanistic (rather than only correlative)
explanation for the results.
Numerous groups have used MD simulations to assess the

effects of mutations. MD simulations probe motions on the or-
der of nanoseconds to microseconds, whereas catalysis by protein
kinases takes place on the scale of milliseconds to seconds (11,
33–36). Careful analysis of simulation trajectories is therefore
needed to gain insight into how mutations affect activity. These
analyses can generally be fit into three broad categories (37): 1)
analysis of alteration in structure- or energy-based functions, 2)
analysis of collective motions, and 3) computation of free energy
landscapes. The first category includes methods such as analysis
of hydrogen bonds and salt bridges, changes in solvent accessible
surface area (SASA), or of hydration dynamics. The second
category includes measurements such as root mean squared
deviation (RMSD) or fluctuation and calculations based on in-
teratomic covariance matrices such as protein structure networks
or principal component analyses. The third category includes a
large and growing number of methods for understanding the en-
ergetic relationship between different conformational states of a
protein. These methods generally rely on some prior knowledge of
different conformational states of a protein (e.g., “active” and
“inactive” conformations of a kinase) and apply some energetic
potential to help the system explore desired states (38–42).
To overcome the limitation of timescales accessible by MD,

enhanced sampling methods that allow more rapid exploration
of conformational space and determination of energy landscapes
have been used on EGFR (43), ABL (44), ALK (45), B-RAF
(46), CDK5 (47), insulin receptor kinase (39), c-KIT (48), HCK
(49), RET and MET (44), and SRC (50, 51). Changes in hy-
drogen bonding networks, salt bridges, and hydrophobic inter-
actions, which are easy to compute in MD simulations, have been

used as proxies for comparing the stabilities of active and inac-
tive conformations for a given mutated variant (11, 35). We
therefore hypothesize that MD simulations can be utilized to
classify activating and nonactivating mutations—based on which
conformation they favor—balancing both accuracy and inter-
pretability in computational analysis of cancer mutations.
A key limitation of most previous studies is that they have

either considered conformational changes only in the wild-type
protein or have assessed only a handful of mutated proteins.
Where MD has been applied as a predictive tool to classify
mutations (11, 15), a key limitation is that any test set of muta-
tions derived from a cancer study is imbalanced in terms of ac-
tivating mutations (which dominate) and nonactivating
mutations. Although upsampling techniques (15) can partially
mitigate this issue, the optimal solution is to incorporate a bal-
ance between activating and nonactivating mutations in the study
design. Here, we investigate the predictive power of MD and ML
methods by carefully curating a list of 42 mutations in ALK from
clinical data, the Catalogue of Somatic Mutations in Cancer
(COSMIC) database (13), and additional “synthetic” test non-
activating mutations that we introduced to improve database
balance and/or to address specific mechanistic questions.

Results
Experimental Profiling of Kinase Mutations. A collection of ALK
variants harboring TKD mutations was characterized experi-
mentally by measuring kcat values for the isolated TKD in pep-
tide phosphorylation assays (5, 11) and assessing oncogenic
transformation by the intact mutated receptor in NIH 3T3 cells
via focus formation assays (see SI Appendix, section 1 for a de-
scription of methods). Importantly, these experimental studies
were performed with no prior knowledge of the results of the
parallel computational analyses. The mutation collection studied
here added 21 substitutions [plus F1174L as known positive
control (11)] to the 21 NB mutations analyzed in our previous
study (11). Eight of these mutations were reported in the
COSMIC database (13) or The Cancer Genome Atlas (TCGA)
in NB (F1174S, Y1278S), melanoma (G1201R, E1242K),
endometrioid carcinoma (R1212C), gastrointestinal carcinoma
(A1251T), or lung cancer (C1156Y, G1269A), with those in lung
cancer associated with resistance of ALK fusions to kinase in-
hibitors (52). Six additional mutations (C1097A, Y1278A/E,
R1279Q, Y1282E, and Y1283E) were included to test the ability
of our computational approach to recapitulate published studies
(53) of how alterations in the ALK TKD YxxxYY motif (in its
activation loop) affect activity. It is known that mutating the first
tyrosine to serine (in Y1278S) is activating (11), but the Y1278A
mutation (or Y1282/Y1283 mutations) is not (53). This presents
a good test for our computational approach. The remaining
seven mutations studied were selected based on modeling results
blind to experiment. Together with our previous studies of NB
mutations (11), these data yield a list of 42 well-characterized ALK
mutations available for computational analysis. Both kcat and
transformation ability of all 42 variants are presented in Fig. 1,
combining the results with our earlier data on NB variants (11).
As shown in Fig. 1, the resulting experimental dataset is more

balanced with respect to those that are and are not activating,
respectively. There is a good correlation between the catalytic
activity (kcat) of the purified (nonphosphorylated) ALK TKD
and the ability of the intact ALK variant to transform NIH 3T3
cells (insert in Fig. 1B). Consistent with our previous studies (11),
an increase in the kcat value of >4.5-fold appears to be sufficient
for NIH 3T3 cell transformation in most cases—with one ex-
ception being Y1278A, which was less active in kinase assays
than expected based on NIH 3T3 transformation studies. Simi-
larly, analysis of 22 mutations in BRAF, frequently mutated in
melanoma and colorectal cancer, has shown that variants with an
elevation in kcat of approximately three- to fivefold could
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transform cells in focus formation assays (33, 54, 55). Studies of
ErbB2 have also shown that an increase in kcat of approximately
fourfold in assays of the monomeric TKD correlates with trans-
formation in colony formation assays (34, 56). An increase in kcat by
three- to fivefold therefore appears to be a common threshold for
cell transformation by these oncogenically activated kinases.
There were a few ALK variants whose catalytic activity could

not be analyzed biochemically in kinase assays due to experi-
mental difficulty (or intrinsic nature of the protein). R1279Q and
G1201R (as previously reported in ref. 53) did not yield high-
quality TKD protein, possibly due to aggregation. The A1251T
variant simply showed no activity. G1201R nonetheless exhibited
some transforming ability in the context of intact ALK in NIH
3T3 cells, possibly suggesting constitutive signaling from mis-
folded protein retained in the endoplasmic reticulum as with
some other RTK variants (57, 58).
The data in Fig. 1 reveal cases where different substitutions at

the same position have different consequences, which provides a
good test for our computational approach. For example, the
more conservative I1170V substitution appears not to be very
activating or transforming, whereas substituting I1170 with N or

S activates the kinase >20-fold and promotes strong
transformation—consistent with the appearance of these muta-
tions in NB patients (11, 59). In addition, different substitutions
of the first activation loop tyrosine, Y1278, have different con-
sequences. Only the Y1278S mutation has been reported in NB
(11, 53) with six instances in the COSMIC database (13). Consistent
with recent work from Hallberg and colleagues (53), we find that a
Y1278A mutation is much less activating (although we did detect
NIH 3T3 cell transformation). Moreover, a Y1278E mutation
failed to activate the kinase in vitro or to enhance ALK-induced
NIH 3T3 cell transformation. We also mutated the other tyrosines
in the ALK YxxxYY activation loop motif to glutamates (Y1282E
and Y1283E). These variants showed detectably higher catalytic
activity than wild-type TKD, with kcat increasing from 9.3 min−1 (for
wild-type) to 37.9 min−1 for Y1282E and 17.7 min−1 for Y1283E,
both below the ∼4.5-fold kcat increase threshold. For comparison,
kcat for Y1278E was 27.5 min−1 but 172 min−1 for Y1278S.

Computational Analysis: The Wild-Type ALK TKD Conformational
Change Pathway. Conformational changes in kinase domains
determine their activity status, through well-studied transitions

Fig. 1. Catalytic activities (kcat) and transforming potentials of ALK TKD from the collections described in the text. (A) Individual ALK TKD variants are
marked in the ALK TKD crystal structure from the PDB (3LCT), with NB mutations in the lower and other ALK mutations in the upper panel. Important
structural regions in the TKD are colored as follows: N-lobe, green; P-loop, orange; αC-helix, purple; catalytic loop, blue; A-loop, red; active site, cyan; and
C-lobe, gray. (B) Values for kcat for nonphosphorylated ALK TKD variants with saturating Mg2+-ATP (and 2 mM peptide) are shown in the upper plot.
Transformation potential from focus formation assays in NIH 3T3 cells is given in the lower plot, relative to the activated F1174L variant (arbitrarily set at a
value of 1.0). (C) Representative focus assay plates for the mutations studied here, stained with crystal violet, are shown.

Patil et al. PNAS | 3 of 11
Computational studies of anaplastic lymphoma kinase mutations reveal common
mechanisms of oncogenic activation

https://doi.org/10.1073/pnas.2019132118

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
11

, 2
02

1 

https://doi.org/10.1073/pnas.2019132118


www.manaraa.com

(Fig. 2) between family-specific inactive conformations and
common active conformations (60, 61). The ALK TKD has been
observed in its inactive conformation in a series of crystal
structures (62). We sought to study this conformational change
in wild-type ALK TKD using metadynamics simulations (see SI
Appendix, section 2 for a description of methods) to observe the
complete transition between its inactive and the active conforma-
tions. Fig. 2A depicts the reference active and inactive structures of
ALK that we employed for this analysis. We chose to consider
intermediate structures in the inactive-to-active transition in terms
of the RMSD from the reference active and inactive structures of
ALK. This choice of collective variables (CVs)—“RMSD from
reference active” and “RMSD from reference inactive”—leads to a
vast configuration space to be sampled. This is imperative for un-
derstanding effects on global changes in the configuration of the
ALK TKD, but sampling this space requires a very long biased
simulation time. We used well-tempered metadynamics (63) to
sample this large conformational space (SI Appendix), resulting in

the converged free energy landscape depicted in Fig. 2B. We en-
sured that the metadynamics simulations converge by verifying that
there are identifiable minima in several zones of the free energy
landscape (at least four in this case, as labeled in Fig. 2B), corre-
sponding to the various metastable states that intervene between
the active-like and the inactive-like ALK TKD configurations (see
Fig. 2; the convergence criteria and analyses for the four zones
identified are tabulated in panel C and explained further in SI
Appendix, section 2C).
The free energy landscape obtained through metadynamics

serves to represent the complete transition between the inactive
(zone 1) and active states (zone 4) of ALK TKD. The zones are
identified based on free energy contour in regions of the free
energy landscapes which converged in the aggregate simulation
of 2.6 μs. Conformations represented by zones 2 and 3 allow the
transition from zone 1 to zone 4 to occur, providing a necessary
pathway given that the observed minimum activation energy
barrier for a direct transition from zone 1 to zone 4 is 3 kcal/mol.

Fig. 2. (A) Snapshots of inactive (from PDB ID: 3LCS) and active configurations (modeled) of ALK. The key regions are color coded: Nucleotide binding P-loop
is orange, αC-helix is purple, catalytic loop is blue, and activation loop (A-loop) is red. (B) Free energy landscape constructed from an aggregate 2.6 μs
metadynamics simulation, with zones 1 through 4 labeled. (C) Convergence of free energy values F in kilo calories per mole (kcal/mol) in zones 1 through 4.
The values reflect the convergence of the free energies in each of the zones to well below 0.6 kcal/mol (1 kBT) during the course of the 2,600 ns metadynamics
simulation. The detailed convergence procedure is described in SI Appendix, section 2C.
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A complete pathway analysis can be performed by considering an
ensemble of pathways computed by analyzing the kinetics of
transition rates between Markov states (see for examples ref. 64).
The computed free energy difference between zones 1 and 4 is

0.08 kcal/mol. In order to follow changes in structural features of
ALK TKD through the transition, we extract structures from
each zone as frames, compile them as a trajectory, and then
subject them to further analysis of RMSD and hydrogen bond
occupancy. Using this approach, we generated 3,056 frames in
zone 1, 4,618 frames in zone 2, 28,000 frames in zone 3, and
57,358 frames in zone 4.
Table 1 describes the deviation of structures in the four zones

from the reference inactive and active conformations, expressed
as the average (±SD) RMSD from the reference structures of
the αC-helix and the activation loop. The activation loop shows
the largest deviations, with zone 1 displaying a partly helical
conformation that is close to the inactive reference state and
zone 4 showing an extended loop conformation that is closer to
the active reference state (Fig. 2A).
To link the sequence of conformational transitions across

zones 1 through 4 (Fig. 2B) to the underlying residue-level in-
teractions in ALK TKD, we computed the hydrogen bond oc-
cupancy in each of the four zones. The geometric criteria for a
hydrogen bond to be recorded are 1) that the distance between
acceptor and the heavy atom connected to the donor hydrogen
atom is ≤3.2Å and 2) that the angle subtended by the donor
hydrogen acceptor is ≥50°. We computed the hydrogen bond
occupancy as the fraction of the compiled trajectory of confor-
mations that meet the criteria in each zone and depicted the
results on a per residue basis. The resulting hydrogen bond oc-
cupancy fractions for the four zones are reported in Fig. 3,
computed for each residue in the αC-helix (Fig. 3A) and the
activation loop (Fig. 3B). We only count hydrogen bonds formed
between two residues in the αC-helix, between two residues in
the activation loop, or that bridge the αC-helix and the activation
loop. Values for each residue correspond to the sum of the oc-
cupancies of all hydrogen bonds participated in by atoms of that
residue, so occupancy can be greater than 1 for residues involved
in multiple hydrogen bonds.
For activation loop residues, zone 1 (inactive conformation)

has the highest hydrogen bond occupancy, and the trend is
similar (although changes are more subtle) for αC-helix residues.
Our results thus point to a systematic rearrangement of hydrogen
bonds involving the αC-helix and activation loop as ALK TKD
navigates the four zones and the RMSD transitions from zone 1
to zone 4 (Fig. 2B). We therefore hypothesize that there is a
significant correlation between hydrogen bond rearrangement
and the shift in RMSD along the transition pathway. We can
rationalize the changes in hydrogen bond occupancy by
inspecting conformational changes from zone 1 (inactive) to
zone 4 (active). The activation loop changes from a partly helical

structure to a disordered loop (see snapshots in Fig. 3C), re-
ducing the number of internal hydrogen bonds in the activation
loop. Although the αC-helix undergoes an extension, loss of
other hydrogen bonds causes an overall reduction in their
number. The metadynamics sampling also captures the charac-
teristic αC-helix swing from “out” to “in” depicted in Fig. 2A.
Although the αC-helix RMSD values in Table 1 do not show
substantial changes across the four zones, the “out” to “in”
transition reflects substantial motion of the αC-helix relative to
the activation loop. This rearrangement is also reflected in
changes to the mean distance between E1167 (in αC) and K1150
(in strand β3): 3.23 Å (zone 1), 3.51 Å (zone 2), 9.55 Å (zone 3),
and 3.42 Å (zone 4), indicating that conformations in zones 1 and
4, but not zone 3, are poised to form this salt bridge — which
positions the K1150 side chain for interaction with ATP in the
active site as seen in the inactive ALK TKD structures seen in
the Protein Data Bank (PDB). The DFG (Asp-Phe-Glu) motif is
in the “in” (active-like) conformation in all four zones (see
snapshots in Fig. 3C). Indeed, a majority of the PDB structures
adopt a DFG-in conformation, with around three times more
DFG-in structures than DFG-out (65, 66). As evident from the
snapshots (and also the data in Table 1), the activation loop
undergoes the expected transition from an inactive-like (zone 1)
to an active-like (zone 4) configuration. Interestingly, the free
energy landscape and the enhanced sampling also succeeds in
capturing the rotation in the arginine of the HRD (His-Arg-Asp)
motif (see snapshots in Fig. 3C) which provides a link between
the catalytic loop, activation loop phosphorylation sites, and the
magnesium-binding loop in RD (Arg-Asp)-containing kinases
that have this motif (67).

Computational Analysis of ALK Mutants. To translate these findings
for wild-type ALK TKD to mutated systems, we sought to
identify scoring functions that can be computed in regular MD
trajectories and serve as “proxies” for detecting shifts in RMSD
and hydrogen bond occupancy. In addition to hydrogen bond
occupancy, we considered the RMSD of A-loop and αC-helix
residues (SI Appendix, section 2B) and SASA, which appears
to correlate well with ALK activation (11). Time series of hy-
drogen bond occupancy are shown for inactive and active wild-
type ALK TKD in SI Appendix, Fig. S1. These plots reveal how
hydrogen bonds involving a few residues (e.g., R1214, R1253,
and R1275) are highly dynamic, whereas others are relatively
static. Most hydrogen bonds are formed at the start of the sim-
ulation and persist for the duration, whereas some (labile) bonds
flicker in and out of existence—especially for polar and basic
residues. In general, only a few hydrogen bonds show a larger
than 30% occupancy difference between the first and second 50
ns of a simulation. Mutations that stabilize or destabilize these
labile interactions can impact the overall dynamics and conforma-
tional landscape of a protein. In an effort to understand variability
in individual hydrogen bonds, we analyzed the lability of individual
hydrogen bonds as illustrated in SI Appendix, Fig. S1. Classifying
hydrogen bonds with an occupancy change of >30% between the
first and second half of any mutant simulation as “labile” bonds, we
found that only a small number are labile across all systems (SI
Appendix, Table S1). It is worth noting that mapping of the hy-
drogen bond occupancy differences to the free energy differences
will require consideration of all hydrogen bonds, including those
between protein and water. However, our goal as described above is
to use the hydrogen bond occupancy difference as a measure of
RMSD changes and just a proxy for relative stability.
To assess the impact of ALK TKD mutations on hydrogen

bond occupancy patterns, we computed the total hydrogen bond
occupancy difference, ΔMUT,Total (SI Appendix, section 2B),
between a series of inactive conformation simulations for ALK
TKD harboring different mutations. After computing the occu-
pancy for each residue i in the inactive wild-type (OWT,i) and

Table 1. RMSD involving Cα atoms of the αC-helix and the
activation loop along the transition pathway, reported as
mean ± SD

RMSD (in Å) Zone 1 Zone 2 Zone 3 Zone 4

αC-helix (ref-active) 0.84 1.28 1.19 0.87
±0.13 ±0.35 ±0.41 ±0.22

αC-helix (ref-inactive) 0.57 1.18 1.15 0.95
±0.11 ±0.27 ±0.33 ±0.18

Activation loop (ref-active) 5.76 4.8 4.39 3.29
±0.32 ±1.52 ±1.6 ±0.47

Activation loop (ref-inactive) 1.95 4.97 5.93 5.98
±0.58 ±1.2 ±0.86 ±0.49

The terms in parentheses (ref-active and ref-inactive) refer to reference
structures for the RMSD calculation.
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residue i in the inactive mutant (OMUT,i), we calculated the
occupancy difference for residue i (ΔMUT,i) as ΔMUT,i =
OMUT,i − OWT,i. We only take into account hydrogen bonds
with significant occupancy differences between mutant and wild-
type, since small occupancy differences could simply reflect
fluctuations around a well-defined minimum. We achieve this by
setting a threshold, and if ΔMUT,i > threshold, then ΔMUT,i is
added to an accumulator (ΔMUT,Total). We set the threshold at
0.75 and consider a mutation to have hydrogen bond occupancy
that differs from wild-type only if ΔMUT,Total is nonzero. Any
mutant with 0 < ΔMUT,Total < 0.75 must have at least two
altered hydrogen bonds, one gained and one lost, since values
smaller than 0.75 are not counted in our scheme. The maximum
difference in occupancy for one hydrogen bond between two
simulations is two, since side chains are considered as a whole,
and some residues have two hydrogen bond donors or acceptors.
We chose the threshold value of 0.75 by varying this value from
0 to 2 and plotting either the receiver operating characteristic
area under the curve (a measure of how well a classifier can
distinguish between positive and negative examples) or true
positives versus false positives. In both cases, each system had a
peak value between 0.7 and 0.8, although in some cases this peak
spanned a broader region (data not shown). Results for hydro-
gen bond occupancy changes for the differently mutated ALK

variants are shown in Fig. 4A. We include here all variants
represented in the experimental data shown in Fig. 1. Based on
our MD analysis, we can score any mutant system as activating if
ΔMUT,Total exceeds a MD threshold factor TMD. Similarly, in
the experiments we can score mutants with kcat/kcat,wt as acti-
vating if this ratio exceeds a threshold factor Texpt. To explore
suitable threshold values, we assessed the Balanced ACCuracy
(BACC) for the hydrogen bond occupancy–based prediction for
a range of Texpt and TMD values as listed in Fig. 4B. We find that
setting Texpt = 1.5 and TMD = 0.75 gives the highest BACC
(73.23%) for MD-based prediction, with Texpt = 4.5 and TMD =
0.75 yielding the second-best BACC (66.67%). We prefer to
adopt the latter of these two regimes, because setting a Texpt =
4.5 also provides maximal agreement between biochemical ac-
tivation of the kinase and transforming ability in cells measured
through focus formation assays. Our predictions for the different
mutants using these threshold values (Texpt = 4.5 and TMD =
0.75) are provided in Table 2 under the column titled “MD.” A
similar analysis was also performed with SASA and RMSD for
the αC helix and the activation loop (data not shown). The re-
sults indicated that utilizing SASA or RMSD, either separately
or in conjunction with hydrogen bond occupancy, did not im-
prove the BACC.

Fig. 3. (A) Hydrogen bond occupancy in the αC-helix residues differs across the four zones, indicating distinct hydrogen bond networks in the active-like and
inactive-like configurations. (B) Hydrogen bond occupancy in activation loop residues also differs across the four zones, further indicating altered hydrogen
bonding in this region between the active-like and inactive-like configurations. (C) Zoomed in snapshots of the ALK TKD DFG and HRD motifs. The DFG motif
is color coded: D, orange; F, yellow; and G, green. The HRD motif is color coded: H, pink; R, black; and D, magenta. Kinase domain regions are color coded as in
Figs. 1 and 2.
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The choice of the threshold in experiments came from inde-
pendent experiments comparing biochemical activity of kinases
and cell transformation activities of mutated ALK variants in
focus formation assays (5, 11). Our choice of the threshold in
MD was similarly determined by experimental results obtained in
other systems such as BRAF and HER2 (ErbB2) (15). There-
fore, we would like to emphasize that our predictions are not
optimized to the test data, but rather we show the BACC matrix
as a sensitivity analysis.

ML Analysis of ALK Mutations. In addition to the MD studies, we
evaluated the ability of ML (SI Appendix, section 2D) and evo-
lutionary algorithms (SIFT and PolyPhen-2) for binary classifi-
cation of driver (activating) and passenger (nonactivating)
mutations in ALK TKD. ML algorithms require a training and

test set. The training set is used to train the model and find its
optimal hyperparameters. The test set then provides an unbiased
evaluation of the final model fit on the training set. We con-
structed the training dataset by text mining the UniProt database
and validated it by cross-referencing a subset of the entire
dataset with available literature. For each mutant, a feature
vector with 59 elements was thus generated, addressing chemical
properties of the wild-type and mutant residues such as the
difference in polarity and Kyte–Doolittle hydropathy (68). The
final training set used in this study contained 829 total point
mutations, with 230 positive (activating) mutations and 599
negative (nonactivating) mutations. The test set consisted of all
41 ALK variants listed in Fig. 4 (D1270G from Fig. 1 is excluded,
since it lies in the DFG motif and is involved in Mg2+ coordi-
nation). The following ML algorithms were evaluated in this

Fig. 4. (A) Hydrogen bond occupancy difference was computed for the mutations, and the mutations for which this is different from that of wild-type were
designated as activating under our scheme. The histograms are color coded per experimental results as stated in the legend: kcat/kcat,wt < 2, green; kcat/kcat,wt >
4.5, red; and kcat/kcat,wt =2 to 4.5, purple. (B) Calculated BACC for MD predictions for different values of threshold factors Texpt and TMD. (C) Calculated BACC
for ML predictions.
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study: SVM, Neural Net, Logistic Regression, and Random
Forest—alongside SIFT (18) and PolyPhen-2 (24) as commonly
used evolutionary algorithms. Performance was compared across
all methods using the True Positive Rate (TPR), False Positive
Rate (FPR), and BACC metrics (see definitions in SI Appendix,
section 2D). Results for the BACC metric are summarized in
Fig. 4C and the individual predictions for the mutants are listed
in Table 2.
Compared to both MD and the ML algorithms, the evolu-

tionary algorithms SIFT and PolyPhen-2 performed considerably
worse. Although both of these algorithms had higher TPRs than

the other algorithms (Table 2), SIFT and PolyPhen-2 also had
FPRs of 79% and 92%, respectively and lower BACCs compared
to MD (but similar to those for ML). This indicates that the
evolutionary algorithms predict mutations to be activating most
of the time and consequently fail when tasked with determining
which mutated systems are not activated. Interestingly, MD
outperformed all of the ML algorithms. Although our MD ap-
proach had a similar FPR (33%) to some of the ML algorithms,
it had a considerably higher TPR (67%) and BACC (67%)
compared to the ML algorithms, of which the best performing
was Logistic Regression—with TPR and BACC values of 61%

Table 2. ALK mutations: Comparison of MD, SVM, Neural Net, Logistic Regression, Random Forest, SIFT, and PolyPhen-2 against
experiments

Mutation MD SVM Neural net Logistic regression Random forest SIFT PolyPhen 2 Experimental kcat (min−1) Transformation assay

F1174L 1 0 0 1 0 1 1 1 365 ++
F1245V 1 0 0 0 0 1 1 1 341 ++
F1245C 1 0 0 0 0 0 1 1 329 ++
I1170N 0 0 1 1 0 1 1 1 200 ++
I1170S 1 1 1 1 1 1 1 1 200 ++
I1171N 1 0 1 1 0 1 1 1 188 ++
Y1278S 0 1 1 1 1 1 1 1 172 ++
F1174S 0 0 0 1 1 1 1 1 148 ++
R1192P 0 0 0 0 0 1 1 1 139 ++
M1166R 1 0 0 0 0 0 1 1 127 +/−
R1275Q 0 1 1 1 1 1 1 1 119 ++
T1151M 1 0 0 0 0 0 1 1 53.4 —

I1170V 0 0 0 1 0 0 1 1 51.7 —

D1163N 1 0 0 1 0 1 1 1 50.8 —

L1196M 1 1 1 1 1 0 1 1 45.0 +
C1156Y 1 0 0 1 0 1 1 1 43.5 —

G1128A 1 1 1 0 1 1 1 1 43.4 +
Y1282E 0 0 0 1 0 1 1 0 37.9 —

G1269A 0 0 0 0 0 0 1 0 33.2 —

I1183T 0 1 1 1 1 1 1 0 31.5 —

F1098V 0 0 0 1 0 1 1 0 31.4 —

L1204F 1 1 1 0 1 1 1 0 27.7 —

Y1096A 1 1 1 0 1 1 1 0 27.6 —

Y1278E 1 0 0 1 0 0 1 0 27.5 —

R1212C 0 1 1 1 1 1 1 0 22.8 +/−
Y1278A 0 0 1 1 0 1 1 0 21.4 ++
E1242K 1 1 0 0 0 1 1 0 21.1 —

C1097A 0 0 0 0 0 1 1 0 19.6 +/−
F1271L 1 0 0 1 0 1 1 0 17.9 —

Y1283E 1 0 0 1 0 1 1 0 17.7 —

G1286R 0 0 0 0 0 0 1 0 16.4 —

P1213C 1 0 0 0 0 1 1 0 15.0 —

A1200V 0 1 0 0 0 1 1 0 11.1 —

D1349H 0 1 1 1 1 1 1 0 11.2 —

Wild type — — — — — — — — 9.3 —

T1343I 0 0 0 0 0 1 1 0 8.6 —

E1161A 0 0 0 0 0 1 0 0 7.3 +/−
R1231Q 1 1 1 1 1 0 0 0 5.4 —

I1250T 0 0 0 0 1 1 1 0 2.7 —

D1270G* 0 0 0 0 0 1 1 0 1 —

R1279Q 0 1 1 1 1 0 1 0 †
—

A1251T 0 0 0 0 0 1 1 0 ‡
—

G1201R 1 0 0 0 0 1 1 1 † +
TPR (%) 66.67 27.78 38.89 61.11 33.33 72.22 100.00
FPR (%) 33.33 37.50 33.33 45.83 33.33 79.17 91.67
BACC (%) 66.67 45.14 52.78 57.64 50.00 46.53 54.17

In the table, 1 = activating mutation, 0 = nonactivating mutation; these classifications are based on threshold factors Texpt = 4.5 and TMD = 0.75.
*D1270G mutation is considered 0 in MD and ML predictions, since it is a known inactivating mutation of a catalytic residue (D of the DFG motif).
†Expression problem.
‡No phosphorylation.
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and 58%, respectively. This result argues that stabilization of the
hydrogen bond network is mechanistically crucial in the transi-
tion of ALK TKD from its inactive conformation to its active
conformation. As ML considers chemical features more gener-
ally, we used a statistical test (F-test: see SI Appendix, Fig. S6) to
gain further insight from the suite of ML algorithms and to de-
termine which chemical features are most important. Our anal-
ysis indicated that differences in Kyte–Doolittle hydropathy
index between the mutant and wild-type amino acid are an im-
portant feature. It is clear that there is much potential for the
marriage of structural features such as hydrogen bond occupancy
and chemical features of the mutated system in the creation of
an even more effective algorithm for identifying and classifying
driver and passenger mutations. Indeed, although focusing on
the hydrogen bonding network for the MD algorithm outper-
forms the pure ML approaches, it fails in the approach described
here to predict activation by a few key mutations such as
R1275Q, F1174S, R1192P, and Y1278S. Interestingly, mutations
from or to proline are among the most active false negatives
(R1192P) and least active false positives (P1213C), suggesting
that backbone dynamics might not be adequately accounted for
in these cases. Of the remaining “misses” for the hydrogen bond
network–based MD approach, 50% involve mutations from or to
N/Q/E, suggesting that electrostatic or hydration effects need
more attention. A future challenge is to incorporate such con-
siderations to improve precision.

Discussion
The ability to predict which new ALK mutations found in patient
genome sequencing studies are activating would provide a
valuable guide in the clinic (11). By augmenting the set of
patient-derived ALK TKD mutations that we studied previously
(11) with a larger set that includes resistance mutations and
those introduced to challenge our earlier prediction efforts, we
generated a more balanced test set with which to compare pre-
diction algorithms in this study. We profiled kinase kinetics (in
peptide phosphorylation assays) and transforming abilities (in
focus formation assays) of the additional mutated variants ex-
perimentally. With data on a more balanced set of more than 40
ALK TKD variants, we adopted two approaches for computa-
tional predictions. One was an unsupervised learning approach
using MD and the other a supervised learning approach using a
suite of ML classification algorithms—plus SIFT and PolyPhen-
2. In the MD approach, intending to make our predictions ex-
plainable and interpretable, we rationalized the choice of clas-
sifiers used in our predictions by performing enhanced sampling
simulations to capture the entire activation pathway/trajectory of
the ALK kinase domain. We then analyzed a total of 86 ALK
simulations, simulating each mutated system in duplicate and
also undertaking two simulations each of the wild-type kinase in
active and inactive conformations. We then compared the per-
formance of the MD and ML predictions against our
experiments (Table 2).
The predictions from SIFT and PolyPhen-2 have a poor bal-

anced accuracy because both have an FPR of close to 1. ML
techniques perform better than SIFT and PolyPhen-2, and F-test
results (SI Appendix, Fig. S6) identified the difference in the
Kyte−Doolittle hydropathy index between the mutant and wild-
type amino acid as an important feature, with no other dis-
cernible patterns among the activating (or inactivating) muta-
tions in our dataset. The predictions of MD have the lowest
FPR, making it a conservative prediction algorithm but also the
best performer when BACC is considered; we note again that
both MD and ML predictions were blind to the experimental
data. The MD scoring achieves an impressively high BACC
based solely on consideration of hydrogen bond occupancy. This
suggests that several of the activating mutations perturb hydro-
gen bond networks in the αC-helix and the activation loop

regions to differentially stabilize active conformations—establishing
a convergent mechanism for several such activating mutations.
Thus, the MD simulations and associated free energy calculations
provide us with a mechanistic picture of how changes in kinase
structure (or at least its free energy landscape) lead to activation.
They also provide a rational basis for scoring mutants with respect
to TKD activation status by profiling the hydrogen bond occupancy
in the αC-helix and the activation loop.
Our analysis of hydrogen bond occupancy in mutated ALK

TKD systems revealed that a small number of labile bonds recur
across simulations of different mutants. These labile bonds also
account for most of the ΔMUT,Total value determined for the
subdomains that contain them. Remarkably, a few labile hydro-
gen bonds appear capable of capturing most of the predictive
power of the MD, as shown by the reported BACC (Table 3).
Three of the six labile hydrogen bonds in ALK TKD are in the
catalytic loop. Recognizing that oncogenic mutations increase
the relative population of the active state relative to the inactive
state of the kinase, our results imply that monitoring the hy-
drogen bonding network in the inactive state can be a proxy for
the relative stability of these two states. An exact determination
requires the free energy difference between two states which
could be obtained through metadynamics of mutant systems.
However, such an analysis is computationally demanding, re-
quiring 2 to 10 μs of aggregate metadynamics runs per mutant
system, not to mention that the choice of the CVs may also need
to be optimized for each system.
We appreciate that other allosteric interactions may also be

important for regulation of kinase systems such as ALK, which
rely on homo- or heterodimerization for their activation. Alter-
natively, hydrophobic interactions—which will not be captured
by our focus on hydrogen bond occupancy—may dominate. Such
effects are likely to play a role for several activating ALK TKD
mutations (e.g., at F1245 and F1174—although both are well
captured). Another possibility is that the mutation enhances the
kcat directly by stabilizing the transition state of phosphoryl
transfer (69). Analysis of cases where these are not well captured
(e.g., F1174S, I1170N) will provide valuable insight into how to
extend our consideration beyond hydrogen bond occupancy in
the αC-helix and the activation loop. For the latter, the inability
of SASA analysis of R-spine residues to distinguish activating
from nonactivating mutations suggests that more sophisticated
scoring functions for hydrophobic analysis based on free energies
will need to be invoked (11, 70). Reanalysis of the mutations
“missed” by our analysis here will help guide the inclusion of
additional dimensions in scoring functions to improve BACC
and also shed additional light on activation mechanisms. An-
other promising future avenue for investigation is the inclusion
of hydrogen bond occupancy as a feature in future ML
algorithms.

Materials and Methods
Experimental and computational protocols are discussed in detail in SI Ap-
pendix, sections 1 and 2; these sections describe the following protocols
in detail.

Table 3. Labile hydrogen bonds: Bond occupancy classificatory
power by residue(s)

Donors Acceptors BACC (%)

R1275, R1279, R1284 D1163, D1276 60.1
R1253, R1275, R1279, R1284 D1249, D1276 59.5
R1275, R1279, R1284 D1276 57.0
— D1163 55.6
R1275 — 56.5
— D1276 63.3
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Peptide Phosphorylation and Focus Formation Assays. In vitro kinase assays
measuring 32P incorporation from γ-[32P]ATP into a peptide substrate were
performed to measure the activities of wild-type and mutant ALK. To assess
how biochemical characteristics relate to transforming ability, we measured
the ability of intact ALK variants harboring the same kinase domain muta-
tions to induce focus formation in NIH 3T3 cells.

MD and Metadynamics. MD simulations and analysis were carried out using
the BioPhysCode software suite. The initial structure of ALK for the active system
was based on the homologymodel constructed using PDB 1IR3 as template, and
for the inactive system, PDB 3LCS was used. Mutations in the wild-type ALK
system were introduced using the BioPhysCode Automacs routine.

Well-tempered metadynamics was used to sample the conformational
change between the active and the inactive configurations. The biased simu-
lations were performed using PLUMED. The CVs used are RMSD to the active
structure of ALK as CV1 and RMSD to the inactive structure of ALK as CV2.
Computations were carried out in part on supercomputers available through
the Extreme Science and Engineering Discovery Environment (XSEDE) (71, 72).

ML. Supervised ML techniques were implemented to classify a mutation as
activating or not. A pan-kinase mutation dataset was constructed via text
mining of the UniProt database using a Perl script. The resulting data set was
validated by searching the literature for a subset of the entire dataset to
ensure that class assignments were correct. The final set used in this work
contained 829 total point mutations, with 230 positive, activating mutations
and 599 negative, nonactivating mutations. For each mutation, a feature
vector with 59 elements was generated, addressing chemical properties of
the wild-type and mutant residues.

Data Availability.All study data are included in the article and/or SI Appendix.
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